ON THE QUESTION OF THE STABILITY OF POWDER
COMBUSTION IN A HALF-CLOSED SPACE

V. N. Vilyunov and A. P. Rudnev UDC 586.46+662.311

The influence of gas temperature perturbations on the stability of powder combustion in a rocket
chamber is investigated theoretically on the basis of the Zel'dovich-Novozhilov theory of pow-
der combustion. Theinfluence ofthebow space adjacent tothe burning channel is also examined.

The stability of the stationary powder combustion mode in a half-closed space has been investigated
earlier in [1, 2]. The change in gas temperature in the chamber was hence not taken into account fora rapid
change in pressure. Taking account of the influence of the gas temperature fluctuations was examined in [3].
However, underlying the investigation in [3] was a specific stationary fuel combustion model, which predeter-
mines the narrowness of the application of the results obtained. This paper is based on the nonstationary
theory of combustion developed in [4, 6] and relying on the experimental dependences of the combustion ve-
locity on the parameters.

1. Influence of Gas Temperature Fluctuations

The stationary combustion velocity in the adiabatic mode depends only on the pressure and initial tem-
perature of the powder. In real combustion cases the heat transfer from the flame zone results in a reduc-
tion of the maximum temperature versus the adiabatic combustion temperature, which results in a reduction
in the combustion velocity and in the presence of propagation limits, Hence, it is assumed below that the
stationary combustion velocity u° and the surface temperature T;° are functions of the pressure p, the initial
powder temperature Ty, and the gas temperature in the chamber T,:

u°=u° (P, Tos T-z), Tlﬂ= Tlo(p7 To» Tz) (1'1)
According to Ya. B. Zel'dovich [4, 5], by using the stationary connection between the temperature gra-
dient on the surface f°, the combustion velocity, the surface temperature, and the initial temperature
Kfa =u’ (Tlo —_ To) (1.2)
it is possible to go from a dependence of the kind (1.1) to dependences such as
u=u(P: f T2)1 T1=T1(P, fs Tz) (1-3)

which are valid even under nonstationary conditions. Here % is the coefficient of powder temperature con-
duction.

Introducing the parameters k, », 4, r, p, s which characterize the dependence of the combustion veloc-
ity and surface temperature on the pressure, initial temperature, and gas temperature inthe stationary mode

a1n u® dlnw dlnu®
k= (Tlo - TO)( [;;‘:L )p,T,’ v = (-0]21,:7')1'0. T, 7= (31?1 l}z)p, To
= (%) =1 (ﬂ;) = e (20 )
"=\FFolpr> * = TF—T% \Blapir, 0 ° = T* =T \d10 la/p, 1o

formulas connecting the derivatives of the combustion velocity and the surface temperature under stationary
and nonstationary conditions are easily obtained from (1.1)-(1.3):
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(alnu) _vir—1)—Hkp (gﬂnu) _ k
dlpis,r, kEFr—1t dlnfip, 1, k+r—1
dlnu g (r—1)y—ks 1 0T _pE—10—nr
(alnn)p,;‘“ Fdr—1 ' T1°——To(alnp)j,T,— For—1 (1.4)
1 (arl) o 1 (arl)  sk—1N—gr
T’ —To \dIn fip, 7, k4+r—1' 11°—To \8InTe/p, s k4r—1
The heat conduction equation
2
R 0B 0>E>—c) . (1.5)

aTE VR
with the conditions
6(0,7) =9  H{— o0, 1) =0
is valid for a single inertial domain, a heated powder layer, where 9, §, v, &, T are, respectively, the dimen-

sionless temperature in the powder, the surface temperature, the combustlon veloc1ty, the space coordinate,
and the time

o T —Tp T1— Ty u - u® _ uo)2
e—’l’l"——Ta’ 4= T V= E= 1, T="1

Limiting ourselves to an investigation of the stability of the stationary combustion mode relative to
small perturbations, we obtain in a linear approximation

M=l L= M Le@, v=1+op (),
8=[1+0,®)v@lexpt, 0=1+03() o=200=1+emp(m

where ¢ is the dimensionless temperature in the chamber, y(r) is some function of the time, 7y, £, vy, 64,
#4, £1 are much less than one in absolute value. We hence obtain the following equation from (1.5) for the
temperature correction

" ’ e d
8," -+ 6, _$l£~01=0 (1.6)

with the conditions
0,0 =19, 8(-0w)=0
and the relations
kr—1 v, =l —1) —kpln + kg + lgr— 1) —ksl & .7
krr—D)0 =Iptk—1) =~vrln +ro + sk —1) —qlt,
result from (1.3) taking account of (1.4).

The pressure in the chamber is subjected to the mass conservation law

Ay
Voz (7 ) = oo — VEn [P (1.8)

for a variable gas temperature.

Here V, is the free space, ¢ is the combustion surface, p, is the powder density, F, is the area of the
critical nozzle section. A, is a constant, and R is the gas constant. Going over to dimensionless variables
in (1.8), we obtain in a linear approximation

x(m—&)%=(vx—m+%~)¢ (1.9)

where y is the ratio between the relaxation times of the heated powder layer t, and of the chamber t,

t % Vo
=1 by = s b= —
=% =@y A AoF, VRT?
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Let us use the energy equation, written
[ v, d
2 L4 V()Ti't (pRTz) = (podu —_ 7_—_— F ) nRT2 (1.10)
Fig. 1 to close the system (1.6), (1.7), (1.9).

Here p is the gas density in the chamber, n is the adiabatic index, Towrite
(1.10) more rigorously, a member taking account of heat losses in the chamber
should be added to the right side. The heat losses have been taken into account approximately in (1.10), by
introducing the effective adiabatic index. An increase in n results in a rise in the heat losses. From. (1.10)
we have in a linear approximation '

I (o + 2y @.11)

Let us assume that small perturbations ~ exp (y7) are imposed on the stationary combustion mode.
Then the mode stability will be determined by the law of the real part of the frequency Q=Re . Stability
may hence be lost in going through the critical mode by both a continuous and a jump change in the damping
decrement.

In order to investigate the disruption of stability of the first kind on the stability boundary, let us as-
sume y (r)=exp (y71) (y is real). Then the solution of (1.6) is found easily and a relationship between vy, ¢y,
and 44 obtained earlier in [7] results therefrom. Considering this relationship together with (1.7), (L.9),
(1.11) as a system of algebraic equations inny, 4, Vi, ¢4, ¢, We obtain that the necessary condition for com-
patibility of the equations is that the system determinant equal zero. Expanding the determinant and equat-
ing the real and imaginary parts to zero, we arrive at two equations

(a__Jr_ic)_d(b+"*1 ):0 (1.12)

%= e —"ge) T oo+ )]

where
a=v+ FRor— i+ nfg+ St ar — )]

b=Ry[vr —kpfn(gr—ks)l, c=1-+ o kS,

kSy
2R1

—rR, Si—1— ’.';_‘ . R = 2-‘/2[(157(2 Ay e

d=
Having been given a specific y, we determine the value of k from the first equation in (1.12) for given
physicochemical parameters of the powder, and x corresponding to the stability boundary from the second
equation. Numerical computations using (1.12) are presented below,

The singular case ¢ =0 is not contained in (1.12). Putting y (7) =exp (Qr) (@ «1) in order to investigate
it, and reasoning analogously, it can be shown that the loss of stability for ¢ =0 occurs in the case

ntl—2(n—1)q
== <!

Therefore, the stationary combustion mode can turn out to be unstable even for y <1 when taking ac-
count of the dependence of the combustion velocity on the gas temperature.

To investigate the possibility of a jump disruption of stability, we should put y (1) =exp (xQ7) (@>1).
Then, as in [2], it can be shown that for a variable surface temperature this kind of loss of stability is not
generally realized, but occurs at k=1 for a constant temperature.

2, Dependence of the Combustion Stability

in the Presence of a Bow Space (Fig. 1)

A pressure change in the channel for a constant temperature in the chamber and taking account of the
gas overflowing into the bow space-channel system is subject to the balance equation

Vi dpm

e g = Pl — AFpy — M (2.1)
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where the rate of pressure change in the bow space is found from the equa-
x tion
/ Va dpa
1.0 —/ rrr @ =M 2.2)
25l // Here the subscripts 1, 2 denote parameters referring to the channel
V /?L and bow space, respectively;
2 J 1y
NS
A Va = 0, W,F 2.3
Yoz G0 75 27 M = et @3)
Fig. 6 M is the mass flow rate of the gas from (or into) the channel, F, is the chan-

nel cross-sectional area, A is the exhaust coefficient, and W is the over-
flow velocity. For W; > 0 the overflow is info the bow space, and for W; <0

into the channel. For small W; (as compared with the speed of sound), acceleration of the stream is rep-
resented as

e A 2.4)
where L is the characteristic dimension of the bow space.

Adding the heat conduction equation (1.5) to (2.1)-(2.4) and repeating the whole analysis carried out in
section 2, we obtain that the stable combustion boundary for a continuous change in the damping decrement
during passage through the critical mode is found from the solution of the equations

et d*=a,e—bd
. aic — d B
=TT T T

(2.5)

where

Y Ay
G=v(1+ 5 a8 b= (r—kp)R,

x is the ratio between the relaxation times of the channel t; and the heated powder layer t,,

R ¢ S
T AF J(RTO)Y

o] en
Nl)—l

’ tl

x=
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B and ¢ are dimensionless parameters

t3 Va . LAF,
B= —, lg= BN &=
t AF (RT:%)1 5 Fy

t; is the relaxation time of the bow space, and the remaining notation is as before. Hence, if v =0, the loss
of stability occurs only in the case y=1. An investigation of the possibility of a jump disruption in stability
leads to results analogous to [2].

3. Analysis of the Results

To study the quantitative influence of the parameters q, s, 8, ¢, we carried out numerical computations
using (1.12) and (2.5).

The boundaries of domains for the existence of stable modes are shown in Fig. 2 in the coordinates
k, x) for v=2/3, r=p=s8=0,and different q. Curves 1-3 correspond to the values q=0, 1/3, Y.. Curve 1 has
been obtained earlier in [1] for Ty=const. The domain of stable modes lies to the left of the appropriate
curves, and a rise in q narrows the stability domain.

An analogous dependence of the stable mode boundary on the parameter g holds (Fig. 3) even for a var-
iable surface temperature, Here the stability boundaries 1-4 obtained for v=%;, r=Y,, u=0.1, and s=0 cor-
respond to the values =0, 1/3, 2/3, and 1. The dependence 1 for constant temperature in the chamber has
been obtained earlier in [2].

The stable combustion boundaries for a change in the parameter s are presented in Fig.4. The curves
1-3 have been constructed for s=0, 1/3, 2/3, respectively, for v=2/3, q=1/3, r=1/3, ¢=0.1, An increase in the
parameter s exerts a stabilizing influence on the stability.

As follows from Figs. 3 and 4, the curves approach a single vertical asymptote as x—«, which corre-
sponds to the case of constant gas pressure and temperature for an infinite chamber volume. The location
of the asymptote is here independent of the values of the parameters q and s. Using the combustion stability
criterion [6], an asymptotic formula for x can be obtained from (1.12).

The quantitative influence on the combustion stability of the bow space is shown as a function of g in
Figs. 5 and 6. A calculation using (2.5) showed that the influence of the parameter ¢ is insignificant. The
fundamental results are hence presented for the mean value £ =0,01. Curves 1-4 in Fig, 5 have been ob-
tained for g=0, 0.05, 0.1, and 0.5, respectively, for v=2/3, r=0, and p=0. The dependences 1-4 in Fig. 6
have been constructed for g=0, 0.1, 0.5, and 1, respectively, for v="ys, r=1/3, u=0.1; therefore, the pres-
ence of a bow space exerts an essentially stabilizing influence on the stability of the stationary combustion
mode.
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